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• At any time, the state of the system is defined by its integer 
population vector:

• Reactions are transitions from one state to another:

A Jump-Markov description of 
chemical kinetics

[10, 15]

# species 1 # species 2

[11, 15]

[11, 14] [12, 14]

x ∈ Z
N
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• At any time, the state of the system is defined by its integer 
population vector:

• Reactions are transitions from one state to another:

• These reactions are random, others could have occurred:

A Jump-Markov description of 
chemical kinetics

[10, 15] [11, 15]

[11, 14] [12, 14]

[12, 15][9, 15]

[10, 14][9, 14]

x ∈ Z
N
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A Jump-Markov description of 
chemical kinetics

[10, 15] [11, 15]

[11, 14] [12, 14]

[12, 15][9, 15]

[10, 14][9, 14]

[11, 16] [12, 16][10, 16][9, 16]

[8, 15]

[8, 14]

[8, 16]

Or others...
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A Jump-Markov description of 
chemical kinetics

[10, 15] [11, 15]

[11, 14] [12, 14]

[12, 15][9, 15]

[10, 14][9, 14]

[11, 16] [12, 16][10, 16][9, 16]

[8, 15]

[8, 14]

[8, 16]

[7, 15]

[7, 14]

[7, 16]

[13, 15]

[13, 14]

[13, 16]

[14, 15]

[14, 14]

[14, 16]
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A Jump-Markov description of 
chemical kinetics

Or others...
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A Jump-Markov description of 
chemical kinetics

Or others...
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A Jump-Markov description of 
chemical kinetics

Or others...
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At each step, we ask two questions:

When is the next jump?
Where will that jump lead?



Reaction Stoichiometry (review)

• The Stoichiometric vector, s, refers to the relative change in the 
population vector after a reaction.

• There may be many different reactions for a given stoichiometry.
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[10, 15] [11, 15]

[11, 14] [12, 14]

[12, 15][9, 15]

[10, 14][9, 14]

S1 → S1 + S1

S2 → S2 + S1

∅ → S1

s1 = [1, 0]T

S1 + S1 → S1

S1 + S2 → S2

S1 → ∅

s2 = [−1, 0]T

S2 → S2 + S2

S1 → S1 + S2

∅ → S2

s3 = [0, 1]T

S2 → S1

S1 + S2 → S1 + S1

S2 + S2 → S1 + S2

s4 = [1,−1]T



Reaction Propensities (review)

• The propensity,    , of a reaction is its rate.
•          is the probability that the      reaction will occur in a 

time step of length    .
• Typically, propensities depend only upon reactant populations. 
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[10, 15] [11, 15]

[11, 14] [12, 14]

[12, 15][9, 15]

[10, 14][9, 14]

w

wµdt µ
th

dt

S1 + S1 → S1

S1 + S2 → S2

S1 → ∅

s2 = [−1, 0]T

k1x2(x1 − 1)/2
k2x1x2

k3x1

w2(x1, x2)



Probability reaction will occur in               :

Probability reaction will not occur in               :             

Probability a reaction will not occur in two such time 
intervals                 :

Suppose that,               , then the probability that no reaction will 
occur in the interval              is

Taking the limit as K goes to infinity yields that the probability that 
no reaction will occur in the interval              is
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[t, t + ∆t) w∆t + O(∆t)2

[t, t + ∆t) 1 − w∆t + O(∆t)2

[t, t + 2∆t)
(

1 − w∆t + O(∆t)2
)2

= 1 − 2w∆t + O(∆t)2

[t, t + τ)
τ = K∆t

(

1 − w
τ

K
+ O(K−2)

)K

[t, t + τ)

lim
k→∞

(

1 − w
τ

K
+ O(K−2)

)K

= exp(−wτ)

Exponential Waiting Times



The probability that a reaction will occur in the interval              
is                               .   This is a cumulative distribution.

The density (derivative) of the random number,    , is:

Such a random number is known as an exponentially distributed 
random number.

13

Exponential Random Variables

FT (τ) = 1 − exp(−wτ)

[t, t + τ)

fT (τ) =
1

w
exp(−wτ)

T



Exponential Waiting Times

• We have assumed that the system is fully described by the 
population vectors.

• If no reaction occurs, then nothing will have changed.  

• Waiting times must be memoryless random variables.

• No matter where we cut and scale the distribution, it must 
always looks the same.
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The exponential is the only 
continuous r.v. with this property. 



Generating Waiting Times

• To generate an exponentially distributed random number, all we 
need is a uniform random number generator.

• Find the cumulative distribution,

• Generate uniform random number, 

• Find intersection where              :

• This is the time of the next reaction.
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Monte-Carlo 
Simulation Methods

The Jump Markov Process

• Stochastic Simulation Algorithm 
•D.T. Gillespie, J. Phys. Chem. A 81, 2340 (1977)
•M. Gibson and J. Bruck, J. Phys. Chem. 104, 1876 (2000)
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Stochastic Simulation 
Algorithm

s2

Step 1.  Generate the time of 
the next reaction.

Step 2.  Decide which reaction 
has occurred.

Step 3. Update current Time 
(t=t+τ) and State (x = x+sk).

t = ti + τt = ti
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Monte-Carlo 
Simulation Methods

• Stochastic Simulation Algorithm 
•D.T. Gillespie, J. Phys. Chem. A 81, 2340 (1977)
•M. Gibson and J. Bruck, J. Phys. Chem. 104, 1876 (2000)

• Possible SSA methods:
• First Reaction Method (Gillespie ‘77)

• Next Reaction Method (Gibson and Bruck ‘00) 

• Direct Method (Gillespie ‘77)
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τµ =
1

wµ(x)
log

1
rµ

The First Reaction Method (FRM)

s2

Step 1.  Generate the time of 
the next reaction of each type.
The time until the next reaction is a random 
variable of exponential distribution:

To generate each next reaction time, generate 
r1 from a uniform distribution on (0,1) and use 
the equation:

Step 2.  Decide which reaction has occurred.
This is simply the reaction with the smallest       :

Step 3. Update current Time (t=t+    ) and State (x = x+sk).

t = ti + τ

19

k = arg

{

min
µ∈{0,...,M}

τµ

}

τµ

τk

In the FRM each reaction requires M rv’s.

Pτµ(t) = wµ(x)e−wµ(x)t



The First Reaction Method
 SSA in Matlab.
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clear all
t=0;tstop = 2000;                                  %%specify initial and final times
x = [0; 0];                                        %% Specify initial conditions
S = [1 -1 0  0; 0  0 1 -1];                        %% Specify stoichiometry
w = inline('[10, 1*x(1), 10*x(1), 1*x(2)]','x');   %% Specify Propensity functions
while t<tstop     
	   tpos = 1./w(x).*log(1./rand(4,1));            % possible times until first reaction
    [tpos,i]=min(tpos);                           % find which is first reaction
    t=t+tpos;
    if t<=t_stop
	 	     x = x+S(:,i);                             % update the configuration
	   end
end



The Next Reaction Method (NRM)

• In the FRM, we generate times,        , for all M reactions and 
choose the reaction, k, with the smallest time,     .

• Only a few species will change population as a result of this 
reaction--the rest will remain constant.

• For most reactions, the propensity functions will remain 
constant.

• For these, the times can be reused in the subsequent step 
to find the next reaction:                           .

• When there are many different species and reactions, this 
NRM approach can be done with far fewer random number 
than the FRM.

• Particularly useful for compartmental or Reaction-Diffusion 
processes.
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τk

{τµ}

{τµ} →{ τµ − τk}



Monte-Carlo 
Simulation Methods

• Stochastic Simulation Algorithm 
•D.T. Gillespie, J. Phys. Chem. A 81, 2340 (1977)
•M. Gibson and J. Bruck, J. Phys. Chem. 104, 1876 (2000)

• Possible SSA methods:
• First Reaction Method (Gillespie ‘77)

• Next Reaction Method (Gibson and Bruck ‘00) 

• Direct Method (Gillespie ‘77)
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Minimum of two 
Exponential Random Variables

Let                      be a set of exponentially distributed 
random variables: 

The minimum of        is an exponentially distributed 
random variable given by:

The argument, k, of this distribution is also a random 
variable with distribution:
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{τ1, τ2, . . . , τM}

{τµ}

In the DM we only generate 2 rv’s.

τµ ∈ EXP (wµ)

P (k = µ) =
wµ

|w|
1

min
µ∈{0,...,M}

τµ ∈ EXP (|w|
1
)



The Direct Method (DM)

s2

Step 1.  Generate the time of 
the next reaction.
The time until the next reaction is a random 
variable of exponential distribution:

To generate the next reaction time, generate 
r1 from a uniform distribution on (0,1) and use 
the equation:

Step 2.  Decide which reaction has occurred.
To obtain a realization of which reaction will occur, generate 
a second uniform random number, r2, and find the smallest 
k such that:

Step 3. Update current Time (t=t+τ) and State (x = x+sk).

t = ti + τ
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τ =
1

|w|
1

log
1

r1

k−1∑

µ=1

wµ(x) ≤ r2 |w|
1
≤

k∑

µ=1

wµ(x)

Pτ (t) = |w(x)|1e−|w(x)|1t



The Direct Method
 SSA in Matlab.
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clear all
t=0;tstop = 2000;                                  %%specify initial and final times
x = [0; 0];                                        %% Specify initial conditions
S = [1 -1 0  0; 0  0 1 -1];                        %% Specify stoichiometry
w = inline('[10, 1*x(1), 10*x(1), 1*x(2)]','x');   %% Specify Propensity functions
while t<tstop     
    w0 = sum(w(x));                               % compute the sum of the prop. functions 
	   t = t+1/w0*log(1/rand);                       % update time of next reaction
    if t<=t_stop
	 	 r2w0=rand*w0;               % generate second random number and multiply by prop. sum         
	 	 i=1;                                          % initialize reaction counter
	 	 while sum(w(1:i))<r2w0             % increment counter until sum(w(1:i)) exceeds r2w0
	 	 	 i=i+1;
	 	 end
	 	 x = x+S(:,i);                                 % update the configuration
	 end
end



Limitations on the SSA
• The SSA is an “exact” simulation of the system.

• But…
– Stepping through every reaction can take a lot of time. 
– A statistical representation of the system dynamics 

may require many realizations (104 to 106).

• Faster approximations are available for some 
problems.
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Monte-Carlo 
Simulation Methods

• Stochastic Simulation Algorithm (SSA).
•  τ-leaping

•D. Gillespie, J. Chem. Phys. 115, 1716 (2001)
•D. Gillespie, L. Petzold, J. Chem. Phys. 119, 8229 (2003)
•M. Rathinam et al., J. Chem. Phys. 119, 12784 (2003)
•T. Tian and K. Burrage, J. Chem. Phys. 121, 10356 (2004)
•Y. Cao, D. Gillespie and L. Petzold, J. Chem. Phys. 123, 054104 
(2005)
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Step 0.  Specify length of each time step, τ.

 Assume that all propensity functions are constant over 
 the time interval (t,t+τ).

 The number of times each reaction will fire is a 
 Poisson* random number with mean wµτ:

Step 1. For each µ, generate kµ.
Step 2. Update the time:

 Update the state:

 
*For some recent studies, binomial RV’s are used (T. Tian and K. Burrage, 2004)

t = t + τ

28

τ Leaping

x = x +

M∑

µ=1

kµsµ

Pkµ(n) =
[wµ(x)τ ]n

n!
ewµ(x)τ



τ Leaping

s2

t = ti +τt = ti

The number of times each reaction will fire is a Poisson random 
number with mean wµτ:
Step 1. For each µ, generate kµ.
Step 2. Update the state:
 

Update the time: 
  

Update Time

t = t + τ
29

x = x +

M∑

µ=1

kµsµ

k1 = 4; s1 = [0, 1]T

k3 = 3; s1 = [0,−1]T
k2 = 2; s1 = [−1, 1]T

k4 = 4; s1 = [1,−1]T

Pkµ(n) =
[wµ(x)τ ]n

n!
ewµ(x)τ



Limitations of τ leaping
• For many situations τ leaping significantly speeds 

up the Monte Carlo simulation, but:
– Poisson r.v.’s are unbounded

– Propensity functions may change dramatically over 
small time intervals. 

– May result in negative populations.

Note that these concerns are most important when the 
population of some species are very small.

Precisely the circumstance where stochastic models are most important!
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Chemical Langevin Equation
• Comparison of Poisson and Gaussian random variables.

• For small numbers of reaction steps, tau leaping doesn’t 
give much help.

• For large numbers of reactions, replace the Poisson 
distribution with a normal distribution (same mean and 
variance. These are cheaper to generate.

• This is known as the chemical Langevin equation.
31
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Monte-Carlo 
Simulation Methods

• Stochastic Simulation Algorithm (SSA).
•  τ-leaping

• System Partitioning Methods
• Fast--Slow Partitions

•C. Rao and A. Arkin, J. Chem. Phys. 118, 4999 (2003)
•Y. Cao et al., J. Chem. Phys. 122, 014116 (2005)

• Continuous--Discrete Partitions
•E. Haseltine and J. Rawlings, J. Chem. Phys. 117, 6959 (2002)
•H. Salis and Y. Kaznessis, J. Chem. Phys. 122, 054103 (2005)
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Separate into “fast” and 
“slow” partitions.

Assume that the “fast” 
partitions reach probabilistic 
equilibrium before a slow 
reaction occurs.

Fast--Slow partitions.
PSS

33



PSS

Use the fast sets’ steady state probability distributions to 
scale the propensity functions of the slow reactions.

Results in a vector of average propensity functions,     , 
for the slow reactions.

Slow Reaction 
Propensities

Average Slow 
Reaction Propensities

X =

34

Fast--Slow partitions.











wµ(x1)
wµ(x2)
wµ(x3)

...











w̄µ, for µ = {1, 2, . . . , M}

w̄



PSS

35

The projection to the slow 
manifold results in a new 
lower dimensional Markov 
chain.

This is simulated with SSA.

Fast--Slow partitions.



• In some systems, there are great differences in scale:

• Large populations (continuous)

• Small populations (discrete)

• All discrete models take too long.

• All continuous models are inaccurate.

• Hybrid models are necessary.

36

Continuous--Discrete partitions.



Separate into “continuous” and “discrete” 
partitions.

τ

Simulate the continuous part 
with ordinary or stochastic 
differential equations.

Choose uniform rv, r.

Numerically integrate 
propensity functions until:

Choose next discrete reaction.

co
nt

in
uo

us

discrete

− log r

∫ t0+τ

t0

M∑
µ=1

wµ(x(t))dt = − log r



x

Using the SSA to Find Distributions

• The SSA does an excellent job of producing possible 

trajectories.
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After      tosses 
there is still an 
error of about
              .      

Convergence of the SSA
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•To get more accurate distributions, one needs more SSA runs.

•Unfortunately, the convergence rate of any Monte Carlo 
algorithm is fundamentally limited:            

• If very high precision is required, then MC methods will be very 
inefficient.
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Density Computations using the 
Finite State Projection



          evolves according to the Linear Time Invariant ODE:
Ṗ(X, t) = A · P(X, t)

The Chemical 
Master Equation

Define the probability density state 

vector (pdv):                                                   .

The CME (McQuarrie ‘67):

The matrix CME

s1

s2The probability that the system is in configuration x at t+dt is 
equal to the probability that the system is at x at t, and no 
reaction occurs between t and t+dt plus the probability that the 
system is one reaction removed from x at t and that reaction 
occurs between t and t+dt.

P(X, t) := [p(x1, t), p(x2, t), p(x3, t), . . .]
T

P(X, t)

ṗ(x, t) = −p(x, t)
M∑

k=1

wk(x) +
M∑

k=1

p(x − sk, t)wk(x − sk)



• The solution of the CME is a transfer operator:

• The dimension of the CME can be INFINITE.

• Most CME’s cannot be solved, so approximations are needed.

CMEP(t0) P(t0 + τ)
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The Chemical 
Master Equation



A =









−w1 0 w4 0

w1 −w2 w5 0

0 0 −w4 − w5 w3

0 w2 0 −w3









Forming the Generator
A has one row/column 
for each state.
Each transition,            , 
contributes to A in two 
locations: 
                 goes in the 
diagonal element 
                 goes in the 
off-diagonal element 
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1 2

3 4

xi → xj

−wµ(xi)

+wµ(xi)

Ai,i

Aj,i

w1

w2

w3

w4
w5



A =









−w1 0 w4 0

w1 −w2 w5 0

0 0 −w4 − w5 w3

0 w2 0 −w3









The Finite State Projection
Select the states to keep.

Find the corresponding 
projection matrix:

Collapse remaining states 
into a single absorbing 
state

44

1 2

3 4

w1

w2

w3

w4
w5

A[1,3] =

[

−w1 w4

0 −w4 − w5

]

G

A
FSP
[1,3] =





−w1 w4 0

0 −w4 − w5 0

w1 w5 0





This is the generator for a 
new Markov chain



The Full System The Projected System (FSP)

x4x1 x2 x3

x5 x6 x7 x8

x9 x10 x11 x12

x1 x2 x3

x5 x6 x7

Full Master Equation
[

ṖJ

ṖJ′

]

=

[

AJ AJJ′

AJ′J AJ′

] [

PJ(t)
PJ′(t)

]

Dimension =                  = Infinite         #(J) + #(J ′)

The FSP Theorem 
(Munsky/Khammash JCP ‘06)

∣

∣

∣

∣

∣

∣

∣

∣

[

PJ(t)
PJ′

]

−

[

PFSP
J

(t)
0

]
∣

∣

∣

∣

∣

∣

∣

∣

1

= ε(t)

PJ(t) ≥ P
FSP
J (t) and

Dimension =           = 7         

FSP Master Equation
[

ṖFSP
J

ε̇

]

=

[

AJ 0

−1T AJ 0

] [

PFSP
J

(t)
ε(t)

]

#(J) + 1

−1
T
AJ

ε(t)
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The Finite State 
Projection Method



The Finite State Projection Algorithm

Step 1: 
Choose initial projection space, XJ0

.

Inputs: 
Initial Conditions, System Parameters,
Final time (tf ), Allowable error (εmax)

Step 2: 

error, εi(tf ).
Use projection XJi

to find corresponding

Step 3: 
If εi(tf ) ≤ εmax, Stop.

Step 4: 
Expand projection, XJi+1

⊃ XJi
,

Increment i and return to Step 2.

PFSP
Ji

(tf ) approximates P(tf ) to within εmax.
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The “error” sink of the FSP
 to get exit times.
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x4x1 x2 x3

x5 x6 x7 x8

x9 x10 x11 x12

x1 x2 x3

x5 x6 x7

ε(t)

In the original FSP,       is the amount of the probability 
measure that exits the projection region      .

Median exit time:  

In this form       gives information as to when the system 
exits      , but not how.

ε(t)
XJ

ε(t)
XJ

t50 = t, s.t. ε(t) = 0.5



Multiple FSP sinks
 to get exit directions.
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x4x1 x2 x3

x5 x6 x7 x8

x9 x10 x11 x12

x1 x2 x3

x5 x6 x7

ε(t)

By using multiple sinks, one can determine how the 
probability measure exits     . XJ

x4x1 x2 x3

x5 x6 x7 x8

x9 x10 x11 x12

x1 x2 x3

x5 x6 x7

From which state?

ε1(t)

ε3(t)

Which Reaction Leaves      ?XJ

ε3(t)

ε7(t)ε6(t)



The Finite State Projection Algorithm

Step 1: 
Choose initial projection space, XJ0

.

Inputs: 
Initial Conditions, System Parameters,
Final time (tf ), Allowable error (εmax)

Step 2: 

error, εi(tf ).
Use projection XJi

to find corresponding

Step 3: 
If εi(tf ) ≤ εmax, Stop.

Step 4: 
Expand projection, XJi+1

⊃ XJi
,

Increment i and return to Step 2.

PFSP
Ji

(tf ) approximates P(tf ) to within εmax.
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Advantages of the FSP.

• Deterministic.
★ Every run of the FSP yields the same result.
★ Enables easier comparisons of different systems 

(sensitivity analysis).

• Provides accuracy guarantees.
★ Can be made as precise as required.
★ Allows for analysis of rare events.

• Does not depend upon initial conditions.

• Is open to many subsequent model reductions.
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Limitations

• Numerical stiffness may lead to computational 
inefficiency.

• Systems may become very large as distributions cover 
large regions of the configuration space.
★ Compact distributions may drift over time.
★ Dilute distributions may spread over large regions.
★ Dimension grows exponentially with the number of species.

• For these problems, the original FSP may not suffice,

• BUT, with additional model reductions and systematic 
techniques, many of these problems may be alleviated. 
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Finite State Projection (FSP) 

Reductions to the FSP

★ Aggregating unobservable states
Munsky/Khammash, CDC, 2006

★ Time interval discretization 
★ Slow manifold projection
★ Coarse meshes for the CME

Outline
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• Often one is not interested in the entire probability 
distribution. 

• Instead one may wish only to estimate:

★ a statistical summary of the distribution, e.g.

✦ means, variances, or higher moments

★ probability of certain traits:

✦ switch rate, extinction, specific trajectories, etc…

• In each of these cases, one can define an output y(t):

y(t) = CP(t)

Using Input & Output relations for 
model reduction.

Ṗ(t) = AP(t)
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Begin with a Full Integer Lattice 
Description of the System States.
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Remove Unreachable States and 
Aggregate the Observable States.
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Project the Reachable/Observable 
States onto a Finite Subspace.

We now have a solvable approximation, for which the FSP 
gives bounds on the approximation’s accuracy.
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Introduction

Monte Carlo Solution Schemes

Finite State Projection (FSP) 

Reductions to the FSP

★ Minimal Realizations
★ Time interval discretization 

Munsky and Khammash, J. Comp. Phys., 2007
Burrage et al,  A.A. Markov 150th Anniv. Meeting, 2006 

★ Slow manifold projection
★ Coarse meshes for the CME

Outline
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Time Interval Discretization 
for the FSP

★ For many systems, the distribution 
may drift over time.

★ At any one time, the distribution 
may have a limited support, but...

★ The FSP solution must include all 
intermediate configurations.

★ This may lead to an exorbitantly 
large system of ODEs.

τ

2τ

3τ

4τ

5τ

0

58



Brian Munsky 

Center for C
o

n
trol, D

ynamical System
s 

an
d

 C
o

m
pu

ta
tio

n

CC DC
Time Interval Discretization 
for the FSP

τ

2τ

3τ

4τ

5τ

0

[0, τ ]
★ Instead:

✴ Discretize the time interval into 
smaller steps and solve a 
separate projection for each 
interval.
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τ

2τ

3τ

4τ

5τ

0

[τ, 2τ ]
★ Instead:

✴ Discretize the time interval into 
smaller steps and solve a 
separate projection for each 
interval.

60

Time Interval Discretization 
for the FSP
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τ

2τ

3τ

4τ

5τ

0

[2τ, 3τ ]
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Time Interval Discretization 
for the FSP

★ Instead:

✴ Discretize the time interval into 
smaller steps and solve a 
separate projection for each 
interval.
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τ

2τ

3τ

4τ

5τ

0

[3τ, 4τ ]
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Time Interval Discretization 
for the FSP

★ Instead:

✴ Discretize the time interval into 
smaller steps and solve a 
separate projection for each 
interval.
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τ

2τ

3τ

4τ

5τ

0

[4τ, 5τ ]
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Time Interval Discretization 
for the FSP

★ Instead:

✴ Discretize the time interval into 
smaller steps and solve a 
separate projection for each 
interval.
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★ Solving a few smaller systems can 
be much easier than solving a 
single large system.

★ Control the error at each step to 
obtain a guaranteed final error.

★ Caching and reusing information 
from one step to the next may 
further reduce effort.

τ

2τ

3τ

4τ

5τ

0

[4τ, 5τ ]
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Time Interval Discretization 
for the FSP
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Introduction

Monte Carlo Solution Schemes

Finite State Projection (FSP) 

Reductions to the FSP

★ Minimal Realizations
★ Time interval discretization
★ Slow manifold projection

Peles/Munsky/Khammash, JCP, 2006
★ Coarse meshes for the CME

Outline
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Perturbation Theory 
and the FSP

• Some reactions occur faster and more frequently than 
others.

• This can result in a separation of time-scales in the CME.

Disadvantages: Often results in numerical stiffness and 
increased computational complexity.

Advantage: May be able to apply perturbation theory 
to reduce computational effort.
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Intuition (Time Scale Separation) 

1. Begin with a finite state 
(projected) Markov process.

2. Group states connected by 
frequent reactions.

x4x1 x2 x3

x5 x6 x7 x8

x9 x10 x11 x12

Red Arrows = Fast (Frequent) Reactions

Black Arrows = Slow (Rare) Reactions

Orange Arrows = (Rare) Transitions to Sink

XJ′
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Intuition (Time Scale Separation) 

1. Begin with a finite state 
(projected) Markov process.

2. Group states connected by 
frequent reactions.

3. Find invariant distribution 
for each group.

x4x1 x2 x3

x5 x6 x7 x8

x9 x10 x11 x12

Red Arrows = Fast (Frequent) Reactions

Black Arrows = Slow (Rare) Reactions

Orange Arrows = (Rare) Transitions to Sink

XJ′

68



Brian Munsky 

Center for C
o

n
trol, D

ynamical System
s 

an
d

 C
o

m
pu

ta
tio

n

CC DC

Intuition (Time Scale Separation) 

1. Begin with a finite state 
(projected) Markov process.

2. Group states connected by 
frequent reactions.

3. Find invariant distribution 
for each group.

4. Average to find the rates of 
the slow reactions.

Dotted Black = Averaged Slow Reactions

Dashed Orange = Averaged Transitions to Sink

XJ′

Reduced Markov Process
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Intuition (Time Scale Separation) 

1. Begin with a finite state 
(projected) Markov process.

2. Group states connected by 
frequent reactions.

3. Find invariant distribution 
for each group.

4. Average to find the rates of 
the slow reactions.

Dotted Black = Averaged Slow Reactions

Dashed Orange = Averaged Transitions to Sink

XJ′

5. Solve for the solution on the slow-manifold.
6. Lift solution to original coordinate system.

Reduced Markov Process
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Monte Carlo Solution Schemes

Finite State Projection (FSP) 

4. Reductions to the FSP

★ Minimal Realizations
★ Time interval discretization
★ Slow manifold projection
★ Coarse meshes for the CME

Munsky/Khammash, IEEE Trans, 2008

Outline
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Coarse mesh approximation 
of the CME

• Precision requirements may change for different 
regions of the configurations space.

★ Small populations require great precision.

★ High populations require far less precision.

• By choosing a good coarse approximation of the 
CME, we can take advantage of this.
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1 2 3 4 5 6 7 8 9 10 11 12

Start with the full 1-dimensional Markov lattice.

Ṗ = A · P(t) Original CME

1 2 3 5 8 12

Choose a subset of mesh points.

and specify an approximate relation for the 
probability of the removed points: P ≈ Φq(t)

Solve the reduced system ODE: q̇ = Φ−LAΦq(t)

P(t) ≈ Φ exp(Φ−L
AΦt)Φ−L

P(0)

and lift back to the original system coordinates:

73

Coarse mesh approximation 
of the CME
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Coarse Mesh:  
Multiple-species problems.

For problems with many species, the method is the same.

1. Begin with original lattice.
2. Choose interpolation points.
3. Form interpolation (shape) 

function:
4. Project system to find 

reduced system of ODEs:

5. Solve reduced system.
6. Lift back to original 

coordinates.

P(t) ≈ Φq(t)

q̇(t) = Φ−LAΦq(t)
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Monte Carlo Solution Schemes

Finite State Projection (FSP) 

Reductions to the FSP

Example: Heat Shock.

Toggle Switch

Outline
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The Heat Shock Mechanism

• To survive/compete in a changing environment, 
biology must quickly adapt to fluctuations in:

★ Temperature, ph level, nutrient availability, etc...

• High temperature       proteins misfold.

• Heat-shock proteins are created to help fix or 
remove these misfolded proteins.
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S1

k1

−→

←−

k2

S2

Toy Heat Shock Model in E. coli

σ32
σ32    RNAP

σ32

    RNAP

s1
s2

s3

3 forms for      : σ32
σ32 σ32-RNAPσ32-DnaK

S2

k3

−→ S3

Fast

Slow

El Samad et al, PNAS, vol. 102, No. 8, 2005 
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Toy Heat Shock Model 
in E. coli (cont.)

Five Different FSP Solution 
Schemes:

1. Full FSP

Population of free σ32
Po

pu
la

tio
n 

of
 σ

3
2
-R

N
A

P

4459 ODEs
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Five Different FSP Solution 
Schemes:

1. Full FSP
2. Slow manifold (FSP-SM)

Population of free σ32
Po

pu
la

tio
n 

of
 σ

3
2
-R

N
A

P

343 ODEs

Po
pu

la
tio

n 
of

 σ
3
2
-R

N
A

P
79

Toy Heat Shock Model 
in E. coli (cont.)
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Five Different FSP Solution 
Schemes:

1. Full FSP
2. Slow manifold (FSP-SM)
3. Interpolated (FSP-I)

Population of free σ32
Po

pu
la

tio
n 

of
 σ

3
2
-R

N
A

P

539 ODEs
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Toy Heat Shock Model 
in E. coli (cont.)
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Five Different FSP Solution 
Schemes:

1. Full FSP
2. Slow manifold (FSP-SM)
3. Interpolated (FSP-I)
4. Hybrid (FSP-SM/I)

Population of free σ32
Po

pu
la

tio
n 

of
 σ

3
2
-R

N
A

P

Po
pu

la
tio

n 
of

 σ
3
2
-R

N
A

P

49 ODEs
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Toy Heat Shock Model 
in E. coli (cont.)
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Five Different FSP Solution 
Schemes:

1. Full FSP
2. Slow manifold (FSP-SM)
3. Interpolated (FSP-I)
4. Hybrid (FSP-SM/I)
5. Multiple time interval 

(FSP-MTI)
0 100 200 300
Population of σ32-RNAP

Pr
ob

ab
ili

ty
 %

0

70 sets of 195 or fewer ODEs.
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Toy Heat Shock Model 
in E. coli (cont.)
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0 50 100 150 200 250 300 350
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

 

 

Full FSP

FSP!MTS

FSP!SM

FSP!I

FSP!SM/I

10
3
 SSA!SM

Efficiency and accuracy of 
the reduced FSP methods
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The Reduced FSP approaches are much faster and more 
accurate than alternative approaches!

For final time tf = 300s

Method Matrix Size Jsolve Jtotal ∞-norm Error
FSP 4459 750s 750s < 3.0 × 10−5

FSP-MTS 1951 - 40.2s < 1.68 × 10−4

FSP-SM 343 0.25s 0.94s ≈ 5.1 × 10−4

FSP-I 539 5.1s 6.1s ≈ 7.7 × 10−4

FSP-SM/I 49 0.04s 0.78s ≈ 8.2 × 10−4

104 SSA Results would take more than 55 hours.
103 SSA-SM - - 84.1s ≈ 0.0116
104 SSA-SM - - 925s ≈ 3.4 × 10−3

105 SSA-SM - - 9360s ≈ 1.6 × 10−3

84

Efficiency and accuracy of 
the reduced FSP methods
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Introduction

Monte Carlo Solution Schemes

Finite State Projection (FSP) 

Reductions to the FSP

Example: Genetic Toggle Switch

1. SSA and FSP analysis

2. Switch and trajectory analysis

3. Sensitivity and Model Identification.

Outline
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Two repressors, u and v.

v inhibits the production of u.

u inhibits the production of v.

Both u and v degrade exponentially.

u(t)

v(t) a1(u, v) =
α1

1 + vβ ν1 =

[

1

0

]

a3(u, v) =
α2

1 + uγ
ν3 =

[

0

1

]

a2(u, v) = u

a4(u, v) = v

ν2 =

[

−1

0

]

ν4 =

[

0

−1

]

α1 = 50

α2 = 16

β = 2.5

γ = 1

Genetic Toggle Model: 
Gardner, et al., Nature 403, 339-342 (2000)
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We begin with an initial 
condition:

                           

and consider a sample 
trajectory.

A Sample Trajectory

Time 

v(t)

u(t)[

u(t)
v(t)

]

=

[

60
0

]
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Choosing the Finite State Projection

88
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89
Species 1

Sp
ec

ie
s 

2

0 20 40 60 80

10

20

30

40

Most States are 
very unlikely.

These are aggregated.

The master equation for this 
reduced Markov process can 

be solved very efficiently.

Choosing the Finite State Projection
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The Toggle Switch Distribution
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Species 1
Species 2 0

40

30

15

Probability D
ensity

0

0.05

0.03

0.02

0.01

0.04

80

Guaranteed
Method # Simulations Time (s) ||Error||

1

FSP – a 5 ≤ 12 × 10−3

SSA 103 108 ≈ 0.33

aThe FSP algorithm is run only once.

FSP
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The Toggle Switch Distribution

91

Species 1
Species 2 0

40
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ensity

0
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80

Species 1
Species 2 0

40

30

15

80

Guaranteed
No Guarantees

Method # Simulations Time (s) ||Error||
1

FSP – a 5 ≤ 12 × 10−3

SSA 103 108 ≈ 0.33

aThe FSP algorithm is run only once.

FSP SSA (1000 runs)
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Switch rates of the 

gene toggle model.
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Define the switch to be OFF when v(t) > 5 and  u(t) < 16 and ON when   
v(t) < 5 and  u(t) > 16.

We begin with an initial condition,                            , and ask a few 
questions:

Switch Analysis

[

u(0)
v(0)

]

=

[

0
0

]

1. What portion will turn OFF first 
(before they turn ON?

2. How long until 99% of trajectories 
will make this first decision?

3. How long until 99% of trajectories 
will turn ON?

4. How long until 50% of trajectories 
will turn OFF first then ON?

Time 

v(t)

u(t)
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(1) Direction of First Switch

94

Solve for OFF(t) and ON(t)

We define some configuration subsets: 

OFF  - absorbing region 
corresponding to trajectories that 
have entered the OFF region.

ON - absorbing region 
corresponding to trajectories that 
have entered the ON region.

X - every other reachable state.

Aggregate OFF and ON.

Keep reactions originating in X, but 
remove the rest.

u (t)

v(t)
OFF

ONXX

OFF

ON
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(1) Direction of First Switch

95

Time (s)
10−2 10−1 100 101 102
0

0.2

0.4

0.6

0.8

1

Probability of Turning 
ON first:  0.78

Probability of Turning 
OFF first:  0.22

ON
0.78

OFF
0.22

C
um
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at
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e 

Pr
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(2) 50% and 99% Time of First Switch

96

Time (s)C
um

ul
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e 
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10−2 10−1 100 101 102
0

0.2

0.4

0.6

0.8

1

Probability of Turning 
ON first:  0.78

Probability of Turning 
OFF first:  0.22

ON
0.78

OFF
0.22

t99t50

t50 = 0.5305s

t99 = 5.0595s
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Solve for OFF(t)

We define some configuration subsets: 

OFF  - absorbing region 
corresponding to trajectories that 
have entered the OFF region.

X’ - unlikely states.

X - everything else.

Aggregate OFF and X’.

Keep reactions originating in X, but 
remove the rest.

(3) 99% Time of first OFF switch

u (t)

v(t)
OFF X’

X

OF X

X

OFF(t) ε(t)
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100 runs1000 runs10,000 runs100,000 runs

Provides guaranteed bounds 
on the probability of switching.

Monte Carlo simulations (SSA) 
require many many runs to 
achieve comparable precision.

Provide no accuracy 
guarantees.

time (s)

Upper Bound

Lower Bound

The FSP approach also provides estimates of every other initial probability 
distribution supported on      .

Monte Carlo methods only consider a single initial distribution.

Probability of turning OFF vs. time

XJ

0%

90%

99%

99.9%

99.99%
O

FF
(t

)

(3) 99% Time of first OFF switch
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Algorithms

99

Table 1: A comparison of the efficiency and accuracy of the FSP
and SSA solutions to find the time at which 99 percent of cells
will have reached the OFF state.
Method # Simulations Comp. Time (s) a t99 Relative Error

Full Model

FSP N.A. 1.9 850 < 0.12%
SSA 103 33 789 ≈ 7.3%
SSA 104 330 806 ≈ 5.2%
SSA 105 3300 838 ≈ 1.5%
SSA 106 3.3 × 104 845 ≈ 0.6%

aAll computations have been performed in Matlab 7.2
on a 2.0 MHz PowerPC G5.
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(4) Median Time of first OFF 
then ON trajectory

100

u (t)

v(t)

X

ON

X’

OFF

ON

OFF

ONON

ON

Stages:
1. Remain in set of all not OFF 

states until switch to OFF.
2. Remain in set of all not ON 

states until switch to ON.
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ON

OFF

XJ2

yε2

y2

101

XJ1

yε1

y1

ε

Ṗ
1

J1
= AJ1

P
1

J1

y1 = C1P
1

J1

yε1
= cε1

P1

J1

(4) Median Time of first OFF 
then ON trajectory









Ṗ1

J1

Ṗ2

J2

˙ON

ε









=









AJ1
0 0 0

B2C1 AJ2
0 0

0 C2 0 0

cε1
cε2

0 0

















P1

J1

P2

J2

ON

ε









Ṗ2

J2
= AJ2

P2

J2
+ B2y1

y2 = C2P
2

J2

yε2
= cε2

P2

J2 ˙ON =y2

ε̇ =yε1
+ yε2
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Hankel Norm Reduction
(Balanced Truncation)
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780 ODEs,
Reduced to 10

2 ODEs

Total: 1496 ODEs
Reduced to 22

Further reductions are possible.

714 ODEs,
Reduced to 10

Ṗ
1

J1
= AJ1

P
1

J1

y1 = C1P
1

J1

yε1
= cε1

P1

J1

Ṗ2

J2
= AJ2

P2

J2
+ B2y1

y2 = C2P
2

J2

yε2
= cε2

P2

J2 ˙ON =y2

ε̇ =yε1
+ yε2
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Median Times
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1. First Switch: 0.5305s

2. First ON: 0.6565s

3. First OFF: 81.952s
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Time 

• Observations:
• The first decision is ON 

more often than OFF.
• The OFF region is more 

stable than the ON region.
• Reduced models capture 

switching very accurately.
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• Observations:
• The first decision is ON 

more often than OFF.
• The OFF region is more 

stable than the ON region.
• Reduced models capture 

switching very accurately.

Median Times

104

1. First Switch: 0.5305s

2. First ON: 0.6565s

3. First OFF: 81.952s

4. First ON then OFF: 167.530s

5. First OFF then ON: 434.969s
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Errors are guaranteed to be 
less than line thickness!



Both the 1496-order FSP 
and the 22-order FSP-
RED approaches yield 
very accurate results.

After the reduction the 
22-order FSP-RED 
approach is far more 
efficient.

At present, however, the 
reduction is quite 
computationally 
expensive.

Single Stage Trajectories

First Switch to OFF
Method Jred Jsolve Jtotal

a t50 % Error
FSP - 31.0s 31.0s 81.952s < 2 × 10−5

FSP-RED 111.8 1.85s 113.7s 81.952s < 4 × 10−5

104 SSA - 2068s 2068s 78.375s ≈ 4.3

First Switch to ON
Jred Jsolve Jtotal t50 % Error

FSP - 25.7s 25.7s 0.65655s < 1 × 10−7

FSP-RED 133.5s 1.85s 135.3s 0.65656s < 8 × 10−4

104 SSA - 404.4s 404.4 0.65802s ≈ 0.22

Two Stage Trajectories

First Completion of OFF then ON trajectory
Jred Jsolve Jtotal t50 % Error

FSP - 46.9s 46.9s 434.969s < 3.5 × 10−5

FSP-RED 222.0s 1.95s 224.0s 434.968s < 4.5 × 10−3

104 SSA - 3728s 3728s 441.394 ≈ 1.5

First Completion of ON then OFF trajectory
Jred Jsolve Jtotal t50 % Error

FSP - 51.0s 51.0s 167.530s < 6 × 10−7

FSP-RED 241.4s 1.98s 243.4s 167.939 ≈ 0.24
104 SSA - 3073s 3073 166.860 ≈ 0.40

aAll simulations have been performed in MATLAB version R2007a on a
MacBook Pro with a 2.16 GHz Intel Core Duo processor and 2 GB of memory.
All ODEs have been solved with MATLAB’s stiff ODE solver ode15s with
relative tolerance 10−8 and absolute tolerance of 10−20.
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Sensitivity Analysis and 
Model Identification for the 

gene toggle switch.
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Two repressors, u and v.

v inhibits the production of u.

u inhibits the production of v.

Both u and v degrade exponentially.

u(t)

v(t) a1(u, v) =
α1

1 + vβ ν1 =

[

1

0

]

a3(u, v) =
α2

1 + uγ
ν3 =

[

0

1

]

a2(u, v) = u

a4(u, v) = v

ν2 =

[

−1

0

]

ν4 =

[

0

−1

]

α1 = 50

α2 = 16

β = 2.5

γ = 1

Genetic Toggle Model: 
Gardner, et al., Nature 403, 339-342 (2000)
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Sensitivity Analysis
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Nominal Distribution 
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Sensitivity

-0.0025
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Sensitivity to    α1

The precision of the FSP allows for 
accurate sensitivity analyses.  
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Sensitivity Analysis
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Nominal Distribution. 
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Sensitivity to    α2

The precision of the FSP allows for 
accurate sensitivity analyses.  
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Sensitivity Analysis

110

The precision of the FSP allows for 
accurate sensitivity analyses.  

Nominal Distribution
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(FSP - 10s)    

β
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Sensitivity to 
(SSA - 216s)   

β

FSP SSA (1000 runs)

a1(u, v) =
α1

1 + vβ

Production of u:
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Identifying Toggle Parameters
Most biological parameters are 
poorly known and difficult to 
measure.

By providing efficient and precise 
solutions for the CME, the FSP may 
help to systematically identify these 
parameters.

111

(2) Compute difference between target and 
      computed distributions, F = |P∗ − PFSP |1

Inputs: Target distribution,       , 
          Allowable error in the distribution,     , 
          Initial guess for parameters                           . 

P
∗

γ

ᾱ0 = [α1, . . . , αn]

(1)  Use FSP to find an accurate distribution,           ,
      for current parameter values,     .

P
FSP

ᾱi

(3) If           , STOP; the current parameters match 
     the target distribution,              .  

F ≤ γ
ᾱ
∗
≈ ᾱi

(4) Compute sensitivities of     to    , and use these     
     to choose next parameter set         ,
     and Return to Step 1.

F ᾱi

ᾱi+1

The target function,     , can come 
from experimental observations or 
from more complex models.

The objective function,    , can be 
altered to emphasize the importance 
of different aspects of the distribution.

P
∗

F
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Identifying Toggle Parameters
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Parameters after 50 iterations:

Error after 50 iterations

Cost Function

Parameter Identification

α∗ = [α1,α2,β] = [50, 16, 2.5]

α0 = [40, 20, 1.5]

α50 = [49.99, 15.97, 2.504]

F0 = ||P(α0) − P(α∗)||
1
≈ 0.9

F50 ≈ 0.02



Conclusions

• Stochastic fluctuations or “noise” is present in the cell 

• Random nature of reactions 

• Quantization of reactants

• Low copy numbers

• Fluctuations may be very important

• Cell variability

• Cell fate decisions

• Some tools are available

• Monte Carlo simulations (SSA and variants)

• Moment approximation methods

• Linear noise approximation (Van Kampen)

• Finite State Projection 

• Many more are needed!



Conclusions

The Finite State Projection: a new tool for stochastic analysis of gene networks

Advantages:

• Accuracy: solutions with a guaranteed error bounds
Particularly suitable for studying rare events

• Speed: solutions can be much faster than Monte Carlo methods
especially when the system has large number of reactions/reaction firings

• Insight: Provides valuable information at little additional cost:
Sensitivity/robustness to parameter changes 
Effect of changes in initial probabilities

Limitations

• Scalability: Not feasible when there are many species with broad 
distributions (over the time of interest [0, t])


